Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Biomol Struct Dyn ; : 1-11, 2022 Jun 02.
Article in English | MEDLINE | ID: covidwho-20237395

ABSTRACT

COVID-19 (Corona Virus Disease of 2019) caused by the novel 'Severe Acute Respiratory Syndrome Coronavirus-2' (SARS-CoV-2) has wreaked havoc on human health and the global economy. As a result, for new medication development, it's critical to investigate possible therapeutic targets against the novel virus. 'Non-structural protein 15' (Nsp15) endonuclease is one of the crucial targets which helps in the replication of virus and virulence in the host immune system. Here, in the current study, we developed the structure-based pharmacophore model based on Nsp15-UMP interactions and virtually screened several databases against the selected model. To validate the screening process, we docked the top hits obtained after secondary filtering (Lipinski's rule of five, ADMET & Topkat) followed by 100 ns molecular dynamics (MD) simulations. Next, to revalidate the MD simulation studies, we have calculated the binding free energy of each complex using the MM-PBSA procedure. The discovered repurposed drugs can aid the rational design of novel inhibitors for Nsp15 of the SARS-CoV-2 enzyme and may be considered for immediate drug development.

2.
J Biomol Struct Dyn ; : 1-11, 2022 Apr 22.
Article in English | MEDLINE | ID: covidwho-2312243

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is one of the rapid spreading coronaviruses that belongs to the Coronaviridae family. The rapidly evolving nature of SARS-CoV-2 results in a variety of variants with a capability of evasion to existing therapeutics and vaccines. So, there is an imperative need to discover potent drugs that can able to disrupt the function of multiple drug targets to tackle the SARS-CoV-2 menace. Here in this study, we took the different targets of SARS-CoV-2 prepared in the Schrodinger maestro. The library of the DrugBank database is screened against the selected crucial targets. Our molecular docking, Molecular Mechanics/Generalized Born Surface Area (MMGBSA), and molecular dynamics simulation studies led to identifying dinaciclib and theodrenaline as potential drugs against multiple drug targets: main protease, NSP15-endoribonuclease and papain-like-protease, of SARS-CoV-2. Dinaciclib with papain-like protease and NSP15-endoribonuclease show the docking score of -7.015 and -8.737, respectively, while the theodrenaline with NSP15-endoribonuclease and main protease produced the docking score of -8.507 and -7.289, respectively. Furthermore, the binding free energy calculations with MM/GBSA and molecular dynamics simulation studies of the complexes confirm the reliability of the drugs. The selected drugs are capable of binding to multiple targets simultaneously, thus withstanding their activity of target disruption in different variants of SARS-CoV-2. Although, the repurposed drugs are showing potent activity, but may need further in-vitro and in-vivo validations.Communicated by Ramaswamy H. Sarma.

3.
Structure ; 31(2): 138-151.e5, 2023 02 02.
Article in English | MEDLINE | ID: covidwho-2183558

ABSTRACT

NendoU from SARS-CoV-2 is responsible for the virus's ability to evade the innate immune system by cleaving the polyuridine leader sequence of antisense viral RNA. Here we report the room-temperature structure of NendoU, solved by serial femtosecond crystallography at an X-ray free-electron laser to 2.6 Å resolution. The room-temperature structure provides insight into the flexibility, dynamics, and other intrinsic properties of NendoU, with indications that the enzyme functions as an allosteric switch. Functional studies examining cleavage specificity in solution and in crystals support the uridine-purine cleavage preference, and we demonstrate that enzyme activity is fully maintained in crystal form. Optimizing the purification of NendoU and identifying suitable crystallization conditions set the benchmark for future time-resolved serial femtosecond crystallography studies. This could advance the design of antivirals with higher efficacy in treating coronaviral infections, since drugs that block allosteric conformational changes are less prone to drug resistance.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Crystallography, X-Ray , Temperature , Electrons , Lasers
4.
Trends Food Sci Technol ; 132: 40-53, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2165901

ABSTRACT

Background: COVID-19 due to SARS-CoV-2 infection has had an enormous adverse impact on global public health. As the COVID-19 pandemic evolves, the WHO declared several variants of concern (VOCs), including Alpha, Beta, Gamma, Delta, and Omicron. Compared with earlier variants, Omicron, now a dominant lineage, exhibits characteristics of enhanced transmissibility, tropism shift toward the upper respiratory tract, and attenuated disease severity. The robust transmission of Omicron despite attenuated disease severity still poses a great challenge for pandemic control. Under this circumstance, its tropism shift may be utilized for discovering effective preventive approaches. Scope and approach: This review aims to estimate the potential of green tea epigallocatechin gallate (EGCG), the most potent antiviral catechin, in neutralizing SARS-CoV-2 Omicron variant, based on current knowledge concerning EGCG distribution in tissues and Omicron tropism. Key findings and conclusions: EGCG has a low bioavailability. Plasma EGCG levels are in the range of submicromolar concentrations following green tea drinking, or reach at most low µM concentrations after pharmacological intervention. Nonetheless, its levels in the upper respiratory tract could reach concentrations as high as tens or even hundreds of µM following green tea consumption or pharmacological intervention. An approach for delivering sufficiently high concentrations of EGCG in the pharynx has been developed. Convincing data have demonstrated that EGCG at tens to hundreds of µM can dramatically neutralize SARS-CoV-2 and effectively eliminate SARS-CoV-2-induced cytopathic effects and plaque formation. Thus, EGCG, which exhibits hyperaccumulation in the upper respiratory tract, deserves closer investigation as an antiviral in the current global battle against COVID-19, given Omicron's greater tropism toward the upper respiratory tract.

5.
Mol Divers ; 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2128955

ABSTRACT

Many countries in the world have recently experienced an outbreak of COVID-19, turned out to be a pandemic which significantly affected the world economy. Among many attempts to treat/control infection or to modulate host immunity, many small molecules including steroids were prescribed based on their use against other viral infection or inflammatory conditions. A recent report established the possibility of usage of a corticosteroid against the virus through inhibiting NSP-15; an mRNA endonuclease of SARS-CoV-2 and thereby viral replication. This study aimed to identify potential anti-viral agents for the virus through computational approaches and to validate binding properties with the protein target through molecular dynamics simulation. Unlike the conventional approaches, dedicated data base of steroid like compounds was used for initial screening along with dexamethasone and cortisone, which are used in the treatment of COVID-19 affected population in some countries. Molecular docking was performed for three compounds filtered from data base in addition to dexamethasone and Cortisone followed by molecular dynamics simulation analysis to validate the dynamics of binding at the active site. In addition, analysis of ADME properties established that these compounds have favorable drug-like properties. Based on docking, molecular dynamics simulation studies and various other trajectory analyses, compounds that are identified could be suggested as therapeutics or precursors towards designing new anti-viral agents against SARS-CoV-2, to combat COVID-19. Also, this is an attempt to study the impact of steroid compounds on NSP-15 of SARS-CoV-2, since many steroid like compounds are used during the treatment of COVID-19 patients.

6.
Cell Biochem Funct ; 2022 Oct 06.
Article in English | MEDLINE | ID: covidwho-2047496

ABSTRACT

The quick widespread of the coronavirus and speedy upsurge in the tally of cases demand the fast development of effective drugs. The uridine-directed endoribonuclease activity of nonstructural protein 15 (Nsp15) of the coronavirus is responsible for the invasion of the host immune system. Therefore, developing potential inhibitors against Nsp15 is a promising strategy. In this concern, the in silico approach can play a significant role, as it is fast and cost-effective in comparison to the trial and error approaches of experimental investigations. In this study, six turmeric derivatives (curcuminoids) were chosen for in silico analysis. The molecular interactions, pharmacokinetics, and drug-likeness of all the curcuminoids were measured. Further, the stability of Nsp15-curcuminoids complexes was appraised by employing molecular dynamics (MD) simulations and MM-PBSA approaches. All the molecules were affirmed to have strong interactions and pharmacokinetic profile. The MD simulations data stated that the Nsp15-curcuminoids complexes were stable during simulations. All the curcuminoids showed stable and high binding affinity, and these curcuminoids could be admitted as potential modulators for Nsp15 inhibition.

7.
Russian Journal of Physical Chemistry. A ; 96(7):1589-1597, 2022.
Article in English | ProQuest Central | ID: covidwho-2001795

ABSTRACT

The current research has centered on the use of pharmacological and binding affinity methods to test the 36 compounds as bioactive constituents’ inhibitors for COVID-19. Six compounds out of 36 phytoconstituents (rutin, quercetin, catechin gallate, rhamnetin, campesterol and stigmasterol) have demonstrated outstanding molecular docking and drug-like properties as HIV inhibitors Lopinavir and Indinavir. Interestingly, the lowest binding energies (LBE) and the inhibition constant (Ki) have showed that these compounds are able to bind to the P-glycoprotein substrate of 3CLpro and Nsp15. Interestingly, rutin has been found to be an excellent potential inhibitor for COVID-19 proteins because it has the best LBE score and Ki value than those of other compounds, and of its ability to form strong H-bonds with COVID-19 proteins. The compounds that come next to the rutin compound are stigmasterol and campesterol. As a result, these compounds are considered possible novel inhibitors of COVID-19. In order to validate the computational results, more in vitro and in vivo investigations are required to support the findings of this research.

8.
J Mol Biol ; 434(20): 167796, 2022 10 30.
Article in English | MEDLINE | ID: covidwho-1996375

ABSTRACT

Global sequencing efforts from the ongoing COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, continue to provide insight into the evolution of the viral genome. Coronaviruses encode 16 nonstructural proteins, within the first two-thirds of their genome, that facilitate viral replication and transcription as well as evasion of the host immune response. However, many of these viral proteins remain understudied. Nsp15 is a uridine-specific endoribonuclease conserved across all coronaviruses. The nuclease activity of Nsp15 helps the virus evade triggering an innate immune response. Understanding how Nsp15 has changed over the course of the pandemic, and how mutations affect its RNA processing function, will provide insight into the evolution of an oligomerization-dependent endoribonuclease and inform drug design. In combination with previous structural data, bioinformatics analyses of 1.9 + million SARS-CoV-2 sequences revealed mutations across Nsp15's three structured domains (N-terminal, Middle, EndoU). Selected Nsp15 variants were characterized biochemically and compared to wild type Nsp15. We found that mutations to important catalytic residues decreased cleavage activity but increased the hexamer/monomer ratio of the recombinant protein. Many of the highly prevalent variants we analyzed led to decreased nuclease activity as well as an increase in the inactive, monomeric form. Overall, our work establishes how Nsp15 variants seen in patient samples affect nuclease activity and oligomerization, providing insight into the effect of these variants in vivo.


Subject(s)
COVID-19 , Endoribonucleases , SARS-CoV-2 , Uridylate-Specific Endoribonucleases , Viral Nonstructural Proteins , COVID-19/virology , Endoribonucleases/chemistry , Endoribonucleases/genetics , Humans , Recombinant Proteins/chemistry , SARS-CoV-2/enzymology , Uridylate-Specific Endoribonucleases/chemistry , Uridylate-Specific Endoribonucleases/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
9.
Bioinformation ; 18(4): 432-437, 2022.
Article in English | MEDLINE | ID: covidwho-1876089

ABSTRACT

SARS-CoV-2 (Severe Acute Respiratory Syndrome), a causative agent of COVID-19 disease created a pandemic situation worldwide. Nsp15 is a uridine specific endoribonuclease encoded by the genome of SARS-CoV-2. It plays important role in processing viral RNA and, thus evades the host immune system. Therefore, it is of interest to identify mutants of nsp15 amongst Asian SARS-CoV-2 isolates, where a total of 1795 mutations, from 7793 sequences of Asia submitted till 31st January 2022, amongst which A231V, H234Y, K109N, K259R and S261A mutations were found frequent. Hence, we report data on the predicted secondary structure of wild type form followed by hydropathy plot, physiochemical properties, Ramachandran plot, B-cell epitopes prediction and protein modeling of wild type and mutant of nsp15 protein. Data shows that nsp15 of SARS-CoV-2 is a pontential candidate for the development of vaccine to control the infections of SARS-CoV-2.

10.
J Virol ; 96(12): e0068622, 2022 06 22.
Article in English | MEDLINE | ID: covidwho-1874505

ABSTRACT

Infectious bronchitis virus (IBV), a γ-coronavirus, causes the economically important poultry disease infectious bronchitis. Cellular stress response is an effective antiviral strategy that leads to stress granule (SG) formation. Previous studies suggested that SGs were involved in the antiviral activity of host cells to limit viral propagation. Here, we aimed to delineate the molecular mechanisms regulating the SG response to pathogenic IBV strain infection. We found that most chicken embryo kidney (CEK) cells formed no SGs during IBV infection and IBV replication inhibited arsenite-induced SG formation. This inhibition was not caused by changes in the integrity or abundance of SG proteins during infection. IBV nonstructural protein 15 (Nsp15) endoribonuclease activity suppressed SG formation. Regardless of whether Nsp15 was expressed alone, with recombinant viral infection with Newcastle disease virus as a vector, or with EndoU-deficient IBV, the Nsp15 endoribonuclease activity was the main factor inhibiting SG formation. Importantly, uridine-specific endoribonuclease (EndoU)-deficient IBV infection induced colocalization of IBV N protein/dsRNA and SG-associated protein TIA1 in infected cells. Additionally, overexpressing TIA1 in CEK cells suppressed IBV replication and may be a potential antiviral factor for impairing viral replication. These data provide a novel foundation for future investigations of the mechanisms by which coronavirus endoribonuclease activity affects viral replication. IMPORTANCE Endoribonuclease is conserved in coronaviruses and affects viral replication and pathogenicity. Infectious bronchitis virus (IBV), a γ-coronavirus, infects respiratory, renal, and reproductive systems, causing millions of dollars in lost revenue to the poultry industry worldwide annually. Mutating the viral endoribonuclease poly(U) resulted in SG formation, and TIA1 protein colocalized with the viral N protein and dsRNA, thus damaging IBV replication. These results suggest a new antiviral target design strategy for coronaviruses.


Subject(s)
Coronavirus Infections , Endoribonucleases , Infectious bronchitis virus , Stress Granules , Virus Replication , Animals , Antiviral Agents/pharmacology , Chick Embryo , Chickens , Coronavirus Infections/veterinary , Endoribonucleases/genetics , Infectious bronchitis virus/enzymology , Infectious bronchitis virus/physiology , Poultry Diseases/virology , RNA, Double-Stranded
11.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(3): 399-404, 2022 Mar 20.
Article in Chinese | MEDLINE | ID: covidwho-1791799

ABSTRACT

OBJECTIVE: To analyze the mutations in transcription regulatory sequences (TRSs) of coronaviruss (CoV) to provide the basis for exploring the patterns of SARS-CoV-2 transmission and outbreak. METHODS: A combined evolutionary and molecular functional analysis of all sets of publicly available genomic data of viruses was performed. RESULTS: A leader transcription regulatory sequence (TRS-L) usually comprises the first 60-70 nts of the 5' UTR in a CoV genome, and the body transcription regulatory sequences (TRS-Bs) are located immediately upstream of the genes other than ORF1a and 1b. In each CoV genome, the TRS-L and TRS-Bs share a specific consensus sequence, namely the TRS motif. Any changes of nucleotide residues in the TRS motifs are defined as TRS motif mutations. Mutations in the TRS-L or multiple TRS-Bs result in superattenuated variants. The spread of super-attenuated variants may cause an increase in asymptomatic or mild infections, prolonged incubation periods and a decreased detection rate of the viruses, thus posing new challenges to SARS-CoV-2 prevention and control. The super-attenuated variants also increase their possibility of long-term coexistence with humans. The Delta variant is significantly different from all the previous variants and may lead to a large-scale transmission. The Delta variant (B.1.617.2) with TRS motif mutation has already appeared and shown signs of spreading in Singapore, which, and even the Southeast Asia, may become the new epicenter of the next wave of SARS-CoV-2 outbreak. CONCLUSION: TRS motif mutation will occur in all variants of SARS-CoV-2 and may result in super-attenuated variants. Only super-attenuated variants with TRS motif mutations will eventually lose the abilities of cross-species transmission and causing outbreaks.


Subject(s)
COVID-19 , Mutation , SARS-CoV-2 , COVID-19/virology , Genome, Viral , Humans , SARS-CoV-2/genetics
12.
Acta Poloniae Pharmaceutica - Drug Research ; 78(5):657-665, 2021.
Article in English | Scopus | ID: covidwho-1766340

ABSTRACT

Two active coronaviral proteins (3CLpro and Nsp15) have been studied using both the GC-MS and docking methods. These coronaviral proteins have been examined with the methanol extract generated from leaves of the Arum palaestinum. According to the GC-MS findings, 19 major natural compounds are present in the plant’s methanolic extract. The lowest Binding Energy (LBE) and the inhibition constant (Ki) have been used to identify and classify the potential of these lead drugs with their pharmacological properties. The affinity of these compounds with coronaviral proteins has been evaluated to reveal the usage of these compounds at the active sites of the receptors, 3CLpro (PDB ID: 6LU7) and Nsp15 (PDB ID: 6VWW). The results of β-Sitosterol, Androstan-3-one, Phenobarbital, Maltose, and α-Tocopherol show more affinity to Nsp15 and 3CLpro than to the supporting control drugs. Furthermore, an evaluation of the interactions of these components with the amino acids of 3CLpro and Nsp15 revealed that β-Sitosterol has the best LBE score and Ki value as compared with those of the approved medication and all other compounds under investigation. Consequently, these potential compounds may be modern inhibitors of coronavirus. Further in vitro and in vivo studies are needed for such computational findings. © 2021 by Polish Pharmaceutical Society. This is an open-access article under the CC BY NC license (https://creativecommons.org/licenses/by-nc/4.0/).

13.
Acta Crystallographica a-Foundation and Advances ; 77:C790-C790, 2021.
Article in English | Web of Science | ID: covidwho-1762399
14.
J Food Biochem ; 46(5): e14085, 2022 05.
Article in English | MEDLINE | ID: covidwho-1673175

ABSTRACT

SARS-CoV-2 wreaks havoc around the world, triggering the COVID-19 pandemic. It has been confirmed that the endoribonuclease NSP15 is crucial to the viral replication, and thus identified as a potential drug target against COVID-19. The NSP15 protein was used as the target to conduct high-throughput virtual screening on 30,926 natural products from the NPASS database to identify potential NSP15 inhibitors. And 100 ns molecular dynamics simulations were performed on the NSP15 and NSP15-NPC198199 system. In all, 10 natural products with high docking scores with NSP15 protein were obtained, among which compound NPC198199 scored the highest. The analysis of the binding mode between NPC198199 and NSP15 found that NPC198199 would form H-bond interactions with multiple key residues at the catalytic site. Subsequently, a series of post-dynamics simulation analyses (including RMSD, RMSF, PCA, DCCM, RIN, binding free energy, and H-bond occupancy) were performed to further explore inhibitory mechanism of compound NPC198199 on NSP15 protein at the molecular level. The research strongly indicates that the 10 natural compounds screened can be used as potential inhibitors of NSP15, and provides valuable information for the subsequent drug discovery of anti-SARS-CoV-2. PRACTICAL APPLICATIONS: Natural products play an important role in the treatment of many difficult diseases. In this study, high-throughput virtual screening technology was used to screen the natural product database to obtain potential inhibitors against endoribonuclease NSP15. The binding mechanism between natural products and NSP15 was investigated at the molecular level by molecular dynamics technology so that it is expected to become candidate drugs for the treatment of SARS-CoV-2. We hope that our research can provide new clue to combat COVID-19 and overcome the epidemic situation as soon as possible.


Subject(s)
Antiviral Agents , Biological Products , Endoribonucleases , SARS-CoV-2 , Viral Nonstructural Proteins , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biological Products/pharmacology , Endoribonucleases/antagonists & inhibitors , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , COVID-19 Drug Treatment
15.
Microorganisms ; 10(2)2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1667247

ABSTRACT

The pandemic caused by SARS-CoV-2 is not over yet, despite all the efforts from the scientific community. Vaccination is a crucial weapon to fight this virus; however, we still urge the development of antivirals to reduce the severity and progression of the COVID-19 disease. For that, a deep understanding of the mechanisms involved in viral replication is necessary. nsp15 is an endoribonuclease critical for the degradation of viral polyuridine sequences that activate host immune sensors. This enzyme is known as one of the major interferon antagonists from SARS-CoV-2. In this work, a biochemical characterization of SARS-CoV-2 nsp15 was performed. We saw that nsp15 is active as a hexamer, and zinc can block its activity. The role of conserved residues from SARS-CoV-2 nsp15 was investigated, and N164 was found to be important for protein hexamerization and to contribute to the specificity to degrade uridines. Several chemical groups that impact the activity of this ribonuclease were also identified. Additionally, FDA-approved drugs with the capacity to inhibit the in vitro activity of nsp15 are reported in this work. This study is of utmost importance by adding highly valuable information that can be used for the development and rational design of therapeutic strategies.

16.
Journal of Research in Pharmacy ; 25(6):1010-1017, 2021.
Article in English | Scopus | ID: covidwho-1637174

ABSTRACT

In this study, molecular modelling study of previously synthesized compounds against SARS-CoV-2 target enzyme was performed. A subset of 156 compounds from an in-house database has been subjected to molecular modelling studies against the SARS-CoV-2 ADP-ribose phosphatase (ADRP, NSP3), Papain-like protease (PLpro ), and uridine specific endoribonuclease (NSP15) enzymes. We have identified one compound that is expected to inhibit the SARS-CoV-2 ADRP enzyme and one compound that is expected to inhibit the NSP15 enzyme. © 2021 Marmara University Press ISSN: 2630-6344.

17.
Future Virol ; 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1526738

ABSTRACT

The newly emerged human coronavirus, SARS-CoV-2, had begun to spread last year and sparked worldwide. In this study, molecular docking is utilized to test some previously approved drugs against the SARS-CoV-2 nonstructural protein 15 (Nsp15). We screened 23 drugs, from which three (saquinavir, valrubicin and aprepitant) show a paramount predicted binding affinity (-9.1, -9.6 and -9.2 kcal/mol, respectively) against SARS-CoV-2 Nsp15. Moreover, saquinavir and aprepitant make nonbonded interactions with Leu201 in the active site cavity of Nsp15, while the drug valrubicin interacts with Arg199 and Leu201. This binding pattern may be effective against the targeted protein, leading to Nsp15 blockage and virus abolition. Additionally, the pharmacological properties of the screened drugs are known since they have been approved against different viruses.

18.
J Biol Chem ; 297(4): 101218, 2021 10.
Article in English | MEDLINE | ID: covidwho-1433454

ABSTRACT

The SARS-CoV-2 replication-transcription complex is an assembly of nonstructural viral proteins that collectively act to reproduce the viral genome and generate mRNA transcripts. While the structures of the individual proteins involved are known, how they assemble into a functioning superstructure is not. Applying molecular modeling tools, including protein-protein docking, to the available structures of nsp7-nsp16 and the nucleocapsid, we have constructed an atomistic model of how these proteins associate. Our principal finding is that the complex is hexameric, centered on nsp15. The nsp15 hexamer is capped on two faces by trimers of nsp14/nsp16/(nsp10)2, which then recruit six nsp12/nsp7/(nsp8)2 polymerase subunits to the complex. To this, six subunits of nsp13 are arranged around the superstructure, but not evenly distributed. Polymerase subunits that coordinate dimers of nsp13 are capable of binding the nucleocapsid, which positions the 5'-UTR TRS-L RNA over the polymerase active site, a state distinguishing transcription from replication. Analysis of the viral RNA path through the complex indicates the dsRNA that exits the polymerase passes over the nsp14 exonuclease and nsp15 endonuclease sites before being unwound by a convergence of zinc fingers from nsp10 and nsp14. The template strand is then directed away from the complex, while the nascent strand is directed to the sites responsible for mRNA capping. The model presents a cohesive picture of the multiple functions of the coronavirus replication-transcription complex and addresses fundamental questions related to proofreading, template switching, mRNA capping, and the role of the endonuclease.


Subject(s)
Endoribonucleases/metabolism , Models, Molecular , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Dimerization , Endoribonucleases/chemistry , Endoribonucleases/genetics , Humans , Molecular Docking Simulation , Protein Structure, Quaternary , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , SARS-CoV-2/isolation & purification , Transcription, Genetic , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Virus Replication
19.
Autophagy ; 17(9): 2659-2661, 2021 09.
Article in English | MEDLINE | ID: covidwho-1317864

ABSTRACT

As part of innate immune defenses, macroautophagy/autophagy targets viruses and viral components for lysosomal degradation and exposes pathogen-associated molecular patterns to facilitate recognition. However, viruses evolved sophisticated strategies to antagonize autophagy and even exploit it to promote their replication. In our recent study, we systematically analyzed the impact of individual SARS-CoV-2 proteins on autophagy. We showed that E, M, ORF3a, and ORF7a cause an accumulation of autophagosomes, whereas Nsp15 prevents the efficient formation of autophagosomes. Consequently, autophagic degradation of SQSTM1/p62 is decreased in the presence of E, ORF3a, ORF7a, and Nsp15. Notably, M does not alter SQSTM1 protein levels and colocalizes with accumulations of LC3B-positive membranes not resembling vesicles. Infection with SARS-CoV-2 prevents SQSTM1 degradation and increases lipidation of LC3B, indicating overall that the infection causes a reduction of autophagic flux. Our mechanistic analyses showed that the accessory proteins ORF3a and ORF7a both block autophagic degradation but use different strategies. While ORF3a prevents the fusion between autophagosomes and lysosomes, ORF7a reduces the acidity of lysosomes. In summary, we found that Nsp15, E, M, ORF3a, and ORF7a of SARS-CoV-2 manipulate cellular autophagy, and we determined the molecular mechanisms of ORF3a and ORF7a.


Subject(s)
COVID-19 , SARS-CoV-2 , Autophagosomes , Autophagy , Humans , Lysosomes
20.
Biochem J ; 478(13): 2465-2479, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1290092

ABSTRACT

SARS-CoV-2 is responsible for COVID-19, a human disease that has caused over 2 million deaths, stretched health systems to near-breaking point and endangered economies of countries and families around the world. Antiviral treatments to combat COVID-19 are currently lacking. Remdesivir, the only antiviral drug approved for the treatment of COVID-19, can affect disease severity, but better treatments are needed. SARS-CoV-2 encodes 16 non-structural proteins (nsp) that possess different enzymatic activities with important roles in viral genome replication, transcription and host immune evasion. One key aspect of host immune evasion is performed by the uridine-directed endoribonuclease activity of nsp15. Here we describe the expression and purification of nsp15 recombinant protein. We have developed biochemical assays to follow its activity, and we have found evidence for allosteric behaviour. We screened a custom chemical library of over 5000 compounds to identify nsp15 endoribonuclease inhibitors, and we identified and validated NSC95397 as an inhibitor of nsp15 endoribonuclease in vitro. Although NSC95397 did not inhibit SARS-CoV-2 growth in VERO E6 cells, further studies will be required to determine the effect of nsp15 inhibition on host immune evasion.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , Endoribonucleases/antagonists & inhibitors , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Allosteric Regulation , Animals , Chlorocebus aethiops , Endoribonucleases/isolation & purification , Endoribonucleases/metabolism , Enzyme Assays , Fluorescence , High-Throughput Screening Assays , In Vitro Techniques , Kinetics , Naphthoquinones/pharmacology , Reproducibility of Results , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , Small Molecule Libraries/chemistry , Solutions , Vero Cells , Viral Nonstructural Proteins/isolation & purification , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL